

Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

Pour en savoir plus sur nos formations disponibles, veuillez visiter : <u>www.formav.co/explorer</u>

BREVET DE TECHNICIEN SUPERIEUR ENVIRONNEMENT NUCLEAIRE

U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE

SESSION 2013

Durée : 4 heures Coefficient : 3

Matériel autorisé :

- Toutes les calculatrices de poche y compris les calculatrices programmables, alphanumériques ou à écran graphique à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante (Circulaire n°99-186, 16/11/1999)

Documents à rendre avec la copie :

- DOCUMENT REPONSE DR1	page 24/25
- DOCUMENT REPONSE DR2	page 25/25

Dès que le sujet vous est remis, assurez-vous qu'il est complet. Le sujet se compose de 25 pages, numérotées de 1/25 à 25/25.

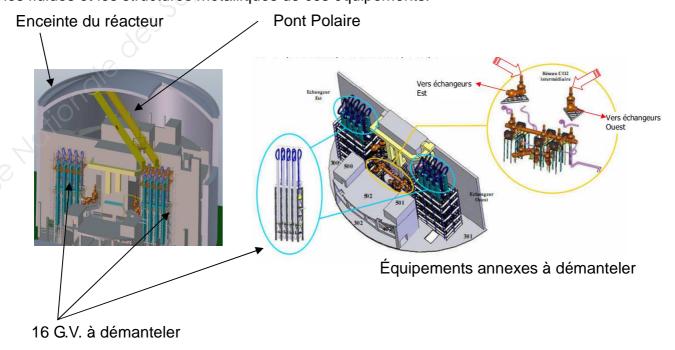
BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 1 / 25

GENERATEUR VAPEUR ET COMPOSANTS DE CENTRALE

Constitution du sujet :

•	Dos	sier presentation	Page 2 à 3
•	Dos	sier Sujet (mise en situation et questions à traiter	par le candidat)
	0	PARTIE A	Page 4
	0	PARTIE B	Pages 4 à 7
	0	PARTIE C	Pages 7 à 9

Dossier Technique Pages 10 à 23


Documents Réponses
 Pages 24 à 25

Présentation

Un réacteur nucléaire à l'arrêt depuis plusieurs années doit être démantelé. Il est classé comme une Installation Nucléaire de Base (I.N.B).

Le dossier présenté concerne l'opération de dépose, de conditionnement et d'évacuation des Générateurs de Vapeur (G.V.).

Dans un bâtiment réacteur, il faut démanteler les 16 générateurs de vapeur des échangeurs CO2/eau (le CO2 est le fluide caloporteur du circuit primaire et le circuit eau est le fluide caloporteur du circuit secondaire), le réseau intermédiaire servant à véhiculer les fluides et les structures métalliques de ces équipements.

BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 2 / 25

Les travaux sont à réaliser sur une centrale nucléaire dont la production d'électricité est achevée depuis plusieurs années, et doivent néanmoins respecter les exigences de sûreté, de sécurité, ainsi que les contraintes d'exploitation qui en résultent.

Les travaux de démantèlement des équipements présents dans le bâtiment réacteur ne doivent à aucun moment mettre en cause la sécurité des personnes, ni l'intégrité des matériels en exploitation avoisinants.

Le démantèlement engendre la démolition de matériels et équipements. Les déchets générés sont de type Très Faiblement Actif (TFA), Faiblement Actif (FA) ou Moyennement Actifs (MA).

Données d'entrée (état initial)

La totalité des travaux est à réaliser dans le bâtiment réacteur. Ce bâtiment, composé de 9 niveaux, est cylindrique et aux dimensions suivantes : 46 m de diamètre et 56 m de haut. Les locaux concernés par les travaux sont situés en zone nord du bâtiment réacteur.

Le bâtiment réacteur est une zone contrôlée du point de vue radioprotection.

Les matériels du circuit CO2 sont considérés comme des déchets FA, MA ou TFA en fonction de leur niveau d'activité et/ou de contamination. Les autres déchets (circuits vapeur, charpente, ...) considérés comme déchets TFA.

La dépose des équipements engendre environ 1 500 tonnes de déchets métalliques dont approximativement :

- 600 tonnes pour les échangeurs,
- 200 tonnes d'équipements annexes,
- 700 tonnes d'aciers noir et galvanisé (charpentes, circuits CO2)

Problématique générale

Les opérations de démantèlement nécessitent des manutentions importantes de charges lourdes (Masse d'un G.V = 37 Tonnes).

Ces manutentions seront réalisées à l'aide des équipements présents dans le bâtiment réacteur (pont polaire, treuil, etc...).

Les équipements datent de plus de 40 ans et les opérations de démantèlement n'ont pas été forcement prises en compte lors de leur conception.

L'étude consistera à vérifier s'ils sont adaptés au cahier des charges du démantèlement envisagé et à la réglementation en vigueur en 2013 .Si nécessaire des modifications ou des choix de matériels nouveaux seront proposés.

BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 3 / 25

Travail demandé

Partie A : analyse et compréhension

L'objectif de cette partie est de mettre en évidence les fonctions relatives au système et à son environnement et de les situer.

L'analyse fonctionnelle de l'opération de démantèlement est donnée sur les dossiers techniques DT1 à DT2.

- A.1) Indiquer la fonction globale de l'opération étudiée.
- A.2) Citer les sous fonctions associées à cette fonction globale.
- A.3) Identifier les solutions technologiques utilisées afin d'assurer la fonction "assurer le déplacement vertical".
- A.4) Réalisation de la chaîne d'énergie du treuil de levage 6T.

On donne sur le document réponse DR1 la chaîne d'énergie partielle du treuil de levage 6T. Compléter cette chaîne d'énergie en suivant les indications suivantes (voir DT2 et DT3) :

- Indiquer le composant assurant la fonction "transformer l'énergie" et relever dans le dossier technique sa puissance P, sa fréquence de rotation N_m et son rendement η_1 à charge maximale.
- Indiquer la valeur du rapport de transmission r_4 du réducteur MERGER ainsi que son rendement η_4 .
- Déterminer et indiquer la valeur du rapport de transmission r₅ du réducteur secondaire ainsi que son rendement η₅.
- Indiquer la valeur du diamètre du tambour.

Partie B : Etude du système de levage 6T

Contexte de l'étude :

Le levage des éléments est réalisé par l'intermédiaire des treuils 6T (capacité de levage de 6 tonnes) et 45T (capacité de levage de 45 tonnes).

Pour des raisons cinématiques (déplacement et encombrement des éléments démantelés), le treuil 6T sera amené à soulever des charges supérieures à sa charge maximale autorisée.

L'élément le plus défavorable est la Sphère montée sur son support qui présente une masse maximale de 7,6 tonnes.

BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 4 / 25

Objectif de l'étude :

Le treuil 6T peut-il être homologué au démantèlement de charge supérieure à sa capacité initiale ?

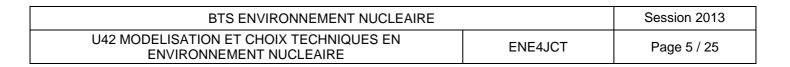
B.1- Validation mécanique de la motorisation

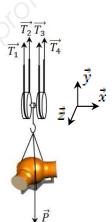
L'objectif de cette partie est de déterminer la puissance nécessaire au moteur dans les nouvelles conditions de fonctionnement afin de valider celui-ci.

On isole l'ensemble charge (sphère + support) + crochet de levage + câble (voir schéma ci-contre et document technique DT3)

Données et hypothèses :

- L'étude s'effectuera lors de la phase de levage ;
- La charge atteint la vitesse linéaire de 0,6 m·min⁻¹ en 2 s. Cette vitesse correspond à la vitesse maximale de translation verticale de la charge ;
- T_1 , T_2 , T_3 et T_4 représentent l'action de traction sur les éléments de câble lors de la levée. Ces actions seront supposées de même norme $T_1 = T_2 = T_3 = T_4 = T$;
- La masse de la charge à soulever est de 7,6 tonnes ;
- Afin d'homologuer le treuil 6T, il faudra majorer la charge à soulever par un coefficient de sécurité de 1,5 ;
- La masse des autres pièces autre que la charge est négligée ;
- L'accélération de la pesanteur g = 9,81 m·s⁻²;
- Les frottements sont négligés ;
- Diamètre du tambour : D = 200 mm ;
- Diamètre du câble : d = 12,6 mm ;
- Lors de l'enroulement du câble, il n'y a pas chevauchement du câble dans le tambour.
- B.1.1) Déterminer la valeur de l'accélération lors de la mise en route du système de levage.
- B.1.2) On isole l'ensemble précisé ci-dessus.


Appliquer le théorème de la résultante dynamique suivant l'axe \vec{y} et en déduire force de traction T sur le câble.


B.1.3) Le système de mouflage (système à poulie) est présenté sur le dossier technique DT3. Dans cette configuration, pour avoir une vitesse de montée de la charge de 0,6 m·min⁻¹, la vitesse verticale de montée du câble devra être deux fois supérieure à celle de la charge.

Déterminer la valeur de la vitesse linéaire de translation du câble.

B.1.4) Quel que soit les valeurs trouvées précédemment, on prendra 28000 N pour la force de traction du câble et 0,02 m·s⁻¹ pour la vitesse linéaire de translation du câble.

Sachant qu'il y a double enroulement au niveau du tambour, déterminer la valeur de la puissance mécanique en sortie du tambour.

- B.1.5) A l'aide des caractéristiques relevées sur la chaîne d'énergie (voir question A.4), déterminer la puissance mécanique en sortie du moteur électrique actionnant le treuil 6T.
- B.1.6) La vitesse de translation verticale du câble étant de 0,02 m·s⁻¹, déterminer la vitesse de rotation du tambour.
- B.1.7) A l'aide des caractéristiques relevées sur la chaîne d'énergie (voir question A.4), déterminer la vitesse de rotation en tr·min⁻¹ du moteur en fonction de celle du tambour.
- B.1.8) Conclusion de la partie B.1:

Comparer la puissance et la vitesse de rotation trouvées aux questions B.1.5 et B.1.7 à celles relevées pour le moteur à la question A.4.

Conclure quant à la validation mécanique du moteur actionnant le treuil 6T.

B.2- Analyse matérielle et temporelle du système de levage

Objectif de l'étude :

Valider les solutions technologiques permettant la commande et la protection du treuil de 6T.

Caractéristiques du moteur de levage :

Le réseau est triphasé 400V 50Hz, 3P+N+T.

Le moteur est de type asynchrone triphasé de puissance nominale utile : 7.5 kW, $U_N = 400V$, Id/In = 6.7, $\cos \varphi = 0.82$ et $\eta = 87\%$.

Le circuit de commande est alimenté par un transformateur en 24V~ à partir du 400V~.

- B.2.1) Donner les effets induits, le moyen de protection et la référence de l'appareil pour une surcharge et un court-circuit en complétant le tableau sur le document réponse DR1.Voir le schéma électrique fourni sur le document réponse DR2.
- B.2.2) Compléter le chronogramme d'une phase de fonctionnement en descente puis en montée sur le document réponse DR1.Le schéma électrique de fonctionnement du moteur de levage est donné sur le document réponse DR2.

BP	DÉSIGNATION
S1	Bouton de commande ARRET
S2	Bouton de commande descente de la charge
S3	Bouton de commande montée de la charge

B.2.3) Pour des raisons de sécurité, on décide de rajouter une signalisation pour la montée et la descente de la charge.

VOYANT	DESIGNATION
L1	Mise sous tension générale du moteur de levage
L2	Montée de la charge
L3	Défaut du relais thermique
L4	Descente de la charge

Compléter le document réponse DR2, permettant de satisfaire le fonctionnement décrit dans le tableau ci-dessus.

BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 6 / 25

- B.2.4) Les contacteurs, de catégorie AC3, permettant la montée et la descente ont la référence LC1 D25. Sachant qu'ils sont manœuvrés en moyenne 1 fois par heure, 8 heures par jour, 5 jours par semaine, 50 semaines par an. En utilisant le dossier technique DT4, déterminer au bout de combien d'années faudra-t-il les remplacer?
- B.2.5) Le moteur électrique de levage est protégé par un relais thermique LRD 21. Celui-ci est réglé sur 16 A. Il ouvre le circuit de puissance au bout de 10 s dans le cas d'une coupure à froid.
 - En utilisant le dossier technique DT5, par quelle valeur de courant le relais thermique est-il traversé à ce moment-là ?
- B.2.6) Si on réarme immédiatement le relais thermique, au bout de combien de temps vat-il s'ouvrir de nouveau ?
- B.2.7) Conclusion de la partie B.2 :
 Conclure quant à la validation des solutions technologiques permettant la commande et la protection du treuil de 6T.

Partie C : Adapter la commande d'un pont polaire existant au démantèlement des groupes vapeurs (GV) d'une centrale nucléaire.

Contexte:

Les groupes vapeurs (GV) de la centrale seront désolidarisés des ½ échangeurs et déposés au-dessus de l'atelier vertical 301 pour être découpés en deux parties. Le pont polaire sera utilisé pour déplacer les GV.

Le pilotage actuel du pont polaire est effectué par un opérateur à partir de commandes manuelles situées dans une cabine ou à partir d'une boîte à boutons située au sol.

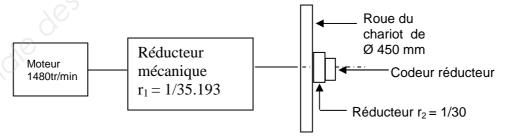
Une analyse des mouvements de rotation du pont polaire et de translation du chariot a permis d'identifier que les déplacements des GV s'effectuent au-dessus de zones de travail fréquentées par des personnels au sol et au voisinage de bâtiments sensibles qui stockent de la matière radioactive.

La commission de sûreté de la centrale prévoit l'éventualité d'un décrochage d'une pièce en mouvement pendant la phase de démantèlement et impose à l'exploitant de limiter les conséquences de ces risques, ce qui n'est pas le cas avec le mode de pilotage actuel.

Aussi lorsque les GV sont soulevés, certaines pièces peuvent être mal découpées ou accrochées accidentellement à la tuyauterie. Ces incidents entraînent une surcharge du système de levage capable de rompre les câbles ou les élingues.

Suite aux remarques ci-dessus, un cahier des charges a été défini dans le but de sécuriser les déplacements du pont polaire en changeant le mode de pilotage actuel et en prévoyant une signalisation des surcharges éventuelles du système de levage 45 tonnes. Voir le dossier technique DT6.

BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 7 / 25


Travail demandé:

Le pilotage actuel des mouvements du pont polaire est inadapté aux déplacements des GV vers l'atelier 301.

L'objectif de l'étude sera de proposer et de valider des solutions techniques et fonctionnelles qui respecteront les critères définis dans le cahier des charges.

- C1) En vous aidant du dossier technique DT7, proposer une chaîne fonctionnelle simplifiée qui permettra d'appréhender le contrôle automatique du pont polaire.
- C2) En vous aidant des dossiers techniques DT7 et DT13, justifier l'intérêt d'un choix d'une unité de dialogue XBTGT2330.
- C3) En vous aidant des dossiers techniques DT8 et DT12, valider le choix des cartes d'entrées sorties logiques BMXDRA1605 et BMXDDI 3202K.
- C4) Les vitesses des mouvements du pont polaire, du chariot et du treuil sont contrôlées par des variateurs de vitesse existants (non représenté sur le DR2). Les variateurs sont pilotés à l'aide de liaisons filaires blindées parcourues par un courant électrique 4-20 mA.
- C4.1) Justifier la solution de la liaison filaire en courant 4-20 mA.
- C4.2) En vous aidant du dossier technique DT12, choisissez une carte de sorties analogiques qui permettra de piloter les 4 variateurs de vitesse.
- C5) Une analyse approfondie des mouvements du pont polaire impose des capteurs de position numérique (codeurs) pour déterminer les positions angulaire et linéaire du pont polaire et du chariot.

Le capteur numérique référencé **XCC2912PS81SGN** est monté sur un réducteur mécanique de rapport de transmission $r_2 = 1/30$. Voir la chaîne cinématique ci-dessous : La précision du capteur doit être $\leq \pm 10$ mm pour une course maximale du chariot de 41 m.

En vous aidant du dossier technique DT14, valider le choix du capteur référencé **XCC2912PS81SGN** en vérifiant la précision du capteur.

BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 8 / 25

C6) La signalisation d'une alarme surcharge du système de levage 45T est réalisée à partir d'une logique programmée implantée dans la mémoire d'un automate programmable industriel (API).

La masse soulevée par le treuil de 45T est mesurée à partir d'un couple mètre monté sur le système de levage.

Lorsque la masse soulevée est supérieure à 10% de la charge utile (45T), l'opérateur du pont polaire est informé par une alarme sonore KL.

Pour éviter de signaler les surcharges transitoires, le dysfonctionnement doit être présent pendant un temps de 1s avant d'être signalé. L'opérateur peut arrêter l'alarme sonore à partir d'un bouton désigné bp acq lorsque le défaut a disparu.

La mesure de la masse est stockée dans une variable désignée WT45T, si elle dépasse la valeur numérique de 4950 alors un klaxon est activé.

En vous aidant du dossier technique DT11, proposer un logigramme à programmer qui permettra de réaliser l'alarme sonore KL.

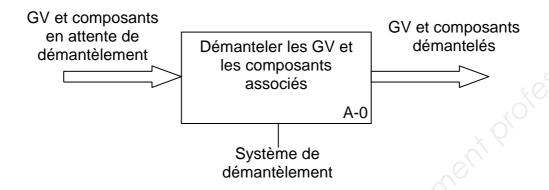
Note: Vous pouvez utiliser des fonctions logiques de base (Non, ET, OU, etc...).

C7) La méthode adoptée pour mettre en œuvre la consigne de position du chariot Wc sur l'axe \vec{v} est expliquée sur les dossiers techniques DT9 et DT10.

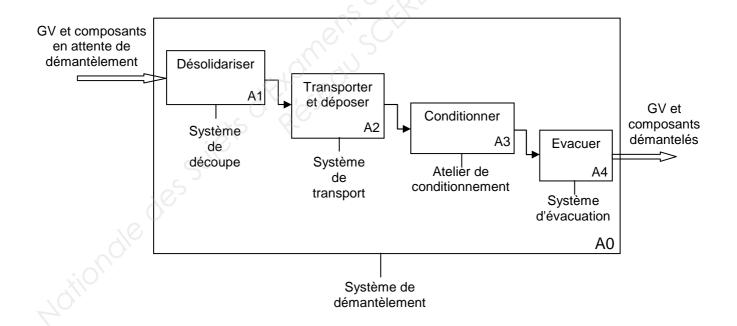
C7.1) En vous aidant de la méthode de calcul donnée sur le dossier technique DT9, compléter le tableau ci-dessous sur le document réponse DR2.

Note: vos calculs seront effectués à partir de positions angulaires statiques du pont polaire sans compensation antérieure de la position par le chariot. En supposant Xc = Xc gv5 = 15529,14 mm.

Position angulaire θ du pont polaire	ΔX (mm)	ΔXc (mm)	Wc (mm)	Wc.cosθ (mm)
15°	60	0	15529,14	15000
20°				
25°				
30°				
35°	2279,27	2782,47	18311,6	15000

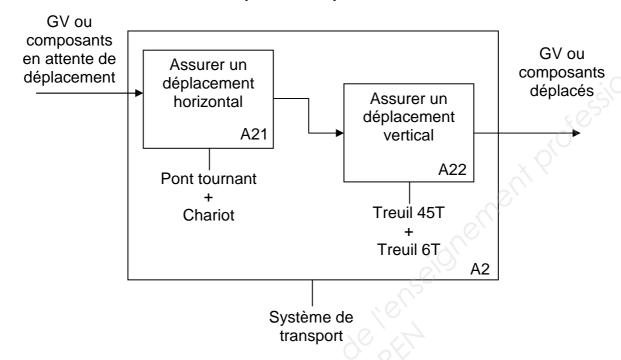

C.7.2) Nous supposerons que l'erreur de position de la boucle de régulation du chariot est nulle, peut-on valider la méthode de calcul de Wc?

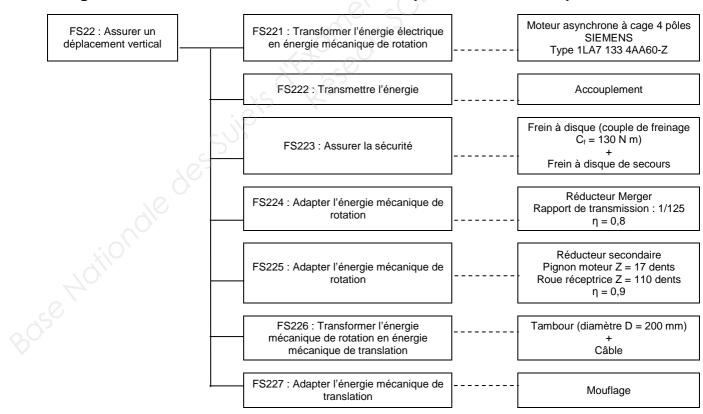
Note : Si l'erreur de position est nulle, cela suppose que la position mesurée du chariot (Xc) est égale à la consigne calculée (Wc) : Xc = Wc (Voir DT10).


BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 9 / 25

DOSSIER TECHNIQUE DT1: Analyse fonctionnelle

Analyse globale de l'étude :


Analyse détaillé de la fonction A-0 :


BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 10 / 25

DOSSIER TECHNIQUE DT2: Analyse fonctionnelle

Détail de la fonction A2 : Transporter et déposer

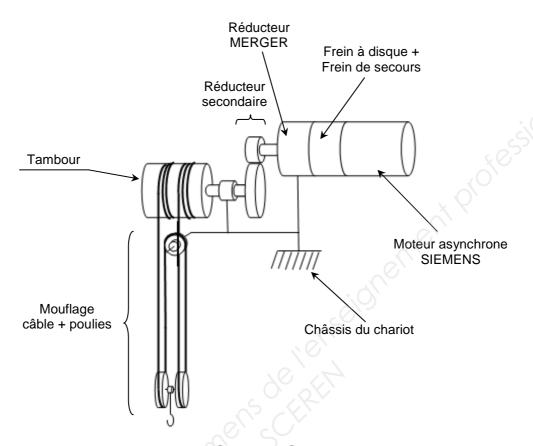


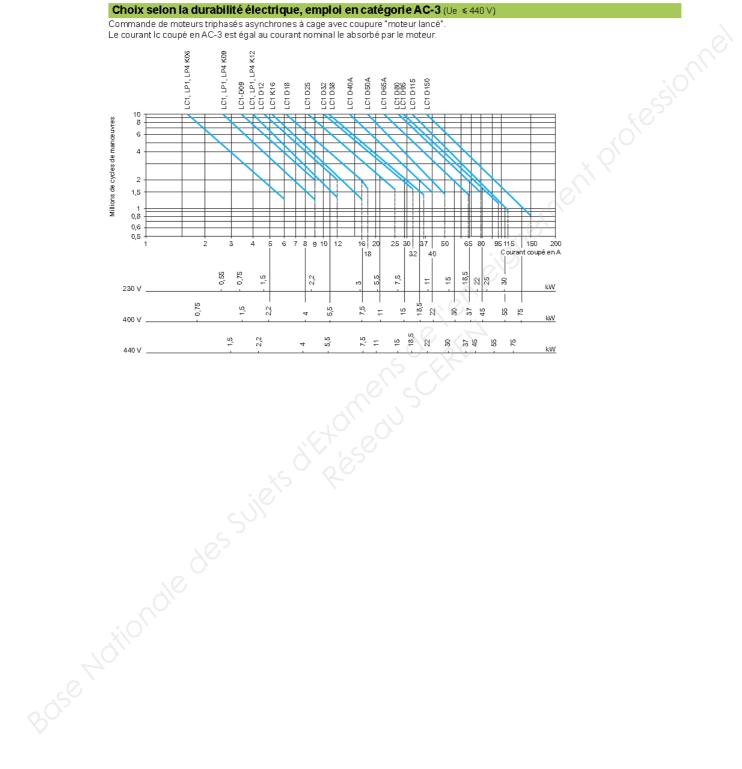
Diagramme FAST de la fonction "assurer un déplacement vertical" par le treuil 6T

BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 11 / 25

DOSSIER TECHNIQUE DT3: Modélisation du treuil 6T

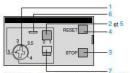
Document constructeur moteur SIEMENS

Moteurs à cage 1LA · Carcasse en aluminium · Exécution standard

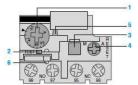

Tableaux de sélection et de commande Hau-Référence Classe Valeurs données pour la puissance assignée Couple Courant Couple Clas- Couple Poids: se de d'inettie couple J de rendesance teur de dede d∉ de décro-Extension de la Vitesse Rendement Fac-Cour Couple Forme daxe marrage chage 835 référence pour tenrant as assigné marrage IMB3 assin a teur gnée ment sion et forme de de signé à En démarrage direct, rapporté au construction voir puis-400 V charge couple courant couple assigné assigné tableau ci-dessous sance assigné env CO5 9 (err) min-1 % kW 96 kg m² kg Moteurs à économie d'énergie selon CEMEP «Rendement augmenté» eff2, indice de protection IPSS, classe de température F (EFF 1500 min-1, 4 pôles, 50 Hz 56M 1LA7 050-4AB ... 56.0 0.06 1350 55:0 0277 0.20 0.42 19 2.6 1.9 13 0.00027 3 1LA7 053-4AB . . 0,29 0.64 2,6 1,9 0,00027 0,09 1350 58,0 57.0 0.77 1.9 13 1LA7 060-4AB . . 1LA7 063-4AB . . 0,12 63 M 1350 54,0 0,75 60,0 0,77 0,42 0,85 1.9 2,8 2,0 13 0,00029 4 0.18 1350 13 0.00037 1LA7 070-4AB 1LA7 073-4AB 0,78 0,77 1,8 1,9 3,0 0,25 1350 60,0 60,0 1,9 2,1 0,00052 0,37 1370 13 0.00077 6 0,55 80 M 1LA7 080-4AA ... 1LA7 083-4AA ... 1396 67,0 67,0 0,82 1,44 3,8 5,1 2,2 2,3 3,9 4,2 2,2 2,3 16 0,0014 9 0,75 0,61 1,88 0,0017 1396 1LA7 090-4AA . . 1LA7 096-4AA . . 7.4 2,3 2,4 2 4,6 5,3 90.5 1415 77,0 79,0 0.81 2,55 0,0024 1,1 77.0 16 13 3,40 0,0033 1420 1LA7 106-4AA ... 15 2.5 0,0047 21 22 1420 82.0 82.5 0.82 5.6 2.8 16 100 L 2 4.70 2 1LA7 107-4AA . 1420 0.82 6,40 20 5.6 3,0 16 0,0055 24 4 112 M 1LA7 113-4AA 2 1440 85.5 0.83 8,20 27 2,7 6,0 3.0 16 0,012 31 1LA7 130-4AA ... 1LA7 133-4AA ... 11,4 2,5 6,3 1325 1455 86,0 0.81 36 3,1 16 0,018 41 86.0 2 1455 0,82 49 49 160M 1LA7 163-4AA ... 1460 88,5 89,0 0,84 21,5 72 22 6,2 2,7 16 0,043 73 160 L 1LA7 166-4AA ... 1460 0,84 98 0,055 90,0 90,2 2,6 6,5 3,0 16 85 28,5

BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 12 / 25

DOSSIER TECHNIQUE DT4: DURABILITE ELECTRIQUE CONTACTEUR AC-3


Choix selon la durabilité électrique, emploi en catégorie AC-3 (Ue ≤ 440 V)

Commande de moteurs triphasés asynchrones à cage avec coupure "moteur lancé" Le courant lc coupé en AC-3 est égal au courant nominal le absorbé par le moteur.



BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 13 / 25

DOSSIER TECHNIQUE DT5: RELAIS THERMIQUE LRD

LRD01...35 et LRD313...LRD365

LRD3322...4369, LR2D

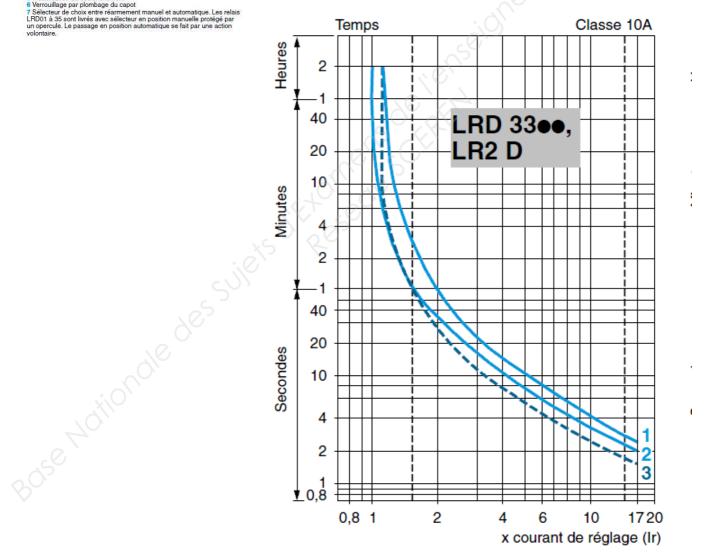
- 1 Bouton de réglage l'
 2 Bouton Test
 Laction sur le bouton Test permet :
 le contrôle du cáblage du circuit de commande
 la simulation du déclenchement du relais (action sur les 2 contacts "0" et r"F").

 3 Bouton Stop, Il agit sur le contact "0" et est sans effet sur le contact "F" 4 Bouton de réarmement
 5 Visualisation du déclenchement
 6 Verrouillage par plombage du capot
 7 Sélecteur de choix entre réarmement manuel et automatique. Les relais LRID01 à 35 sont livrés avec sélecteur en position manuelle protégé par un opercule. Le passage en position automatique se fait par une action volontaire.

Relais thermiques LRD ▶24516◀

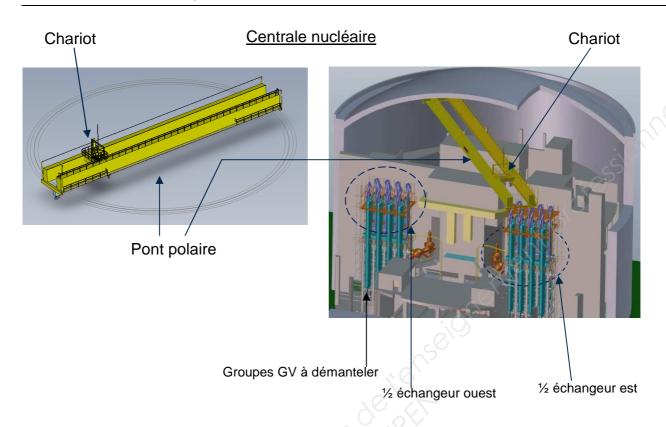
Les relais tripolaires de protection thermique TeSys D sont destinés à la protection des circuits et des moteurs alternatifs contre les surcharges, les coupures de phases, les démarrages trop longs et les calages prolongés du moteur.

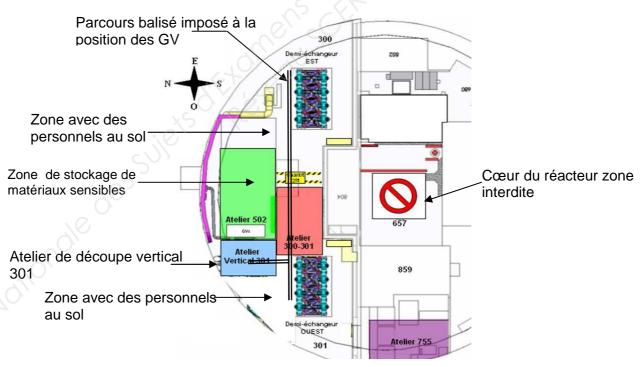
Raccordement


- LRD01 à LRD35 et LRD3322 à 4369, LR2D : vis-étriers ou cosses fermées
- LRD313 à LRD365 : vis BTR à 6 pans creux (1) ou cosses fermées.

Caractéristiques

conformité aux normes	IEC/EN 60947-4-1, IEC/EN 60947-5-1, UL 508, CSA C22.2 n° 14, Directive ATEX 94/9/EC (2) (3)
certifications des produits	UL, CSA, CCC (3), GL, DNV, RINA, BV, LROS (3),
	ATEX INERIS (2) (3)

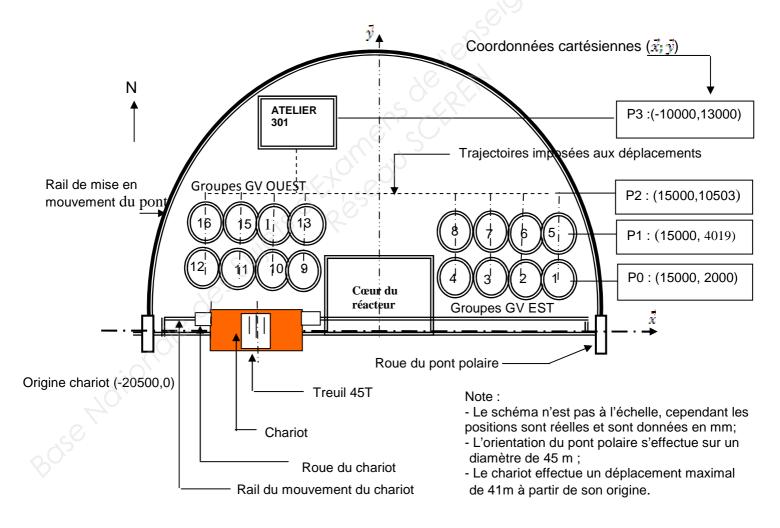

Courbes de déclenchement


Temps de fonctionnement moyen en fonction des multiples du courant de réglage.

- 1 Fonctionnement équilibré, 3 phases, sans passage préalable du courant (à froid).
 2 Fonctionnement sur les 2 phases, sans passage préalable du courant (à froid).
- 3 Fonctionnement équilibré 3 phases, après passage prolongé du courant de réglage (à chaud).
- BTS ENVIRONNEMENT NUCLEAIRE Session 2013 U42 MODELISATION ET CHOIX TECHNIQUES EN **ENE4JCT** Page 14 / 25 **ENVIRONNEMENT NUCLEAIRE**

DOSSIER TECHNIQUE DT6: PRESENTATION DU SYSTEME

BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 15 / 25

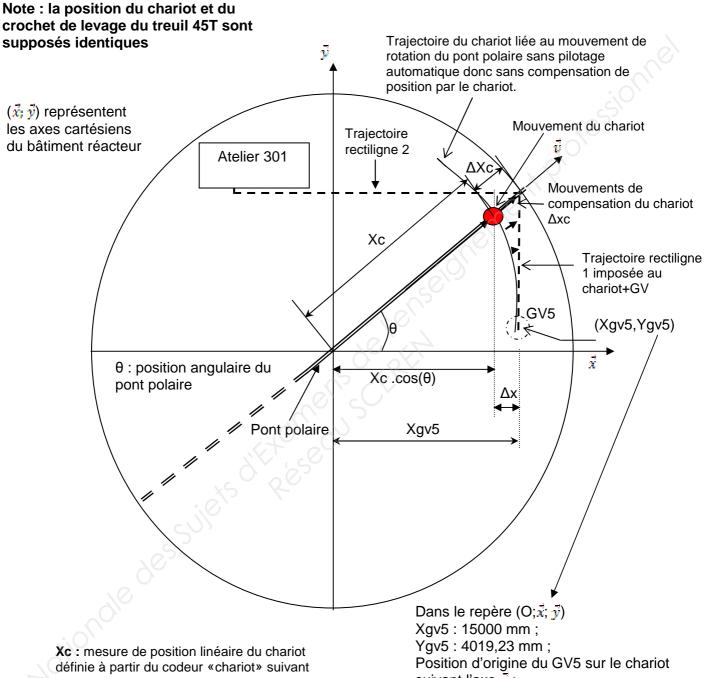

DOSSIER TECHNIQUE DT7: EXTRAIT DU CAHIER DES CHARGES

- Le pupitre de commande actuel sera maintenu pour assurer les commandes manuelles, cependant une logique programmée à partir d'un automate programmable industriel (API) remplacera la logique câblée initiale;
- Une unité de dialogue sera prévue pour assurer la conduite automatique du pont polaire en automatique;

Caractéristiques souhaitées :

- Ecran tactile 5,7"
- Ecran couleur
- Communication série et Ethernet
- Les déplacements des GV vers l'atelier 301 seront en mode automatique;
- Une alarme sonore sera prévue sur le dispositif de levage pour informer l'opérateur d'une surcharge accrochage des GV;
- Les trajectoires du chariot doivent respecter un parcours sécurisé définie sur la figure 1 ci-dessous ;
- Des capteurs de position numérique auront une précision de ±10 mm pour le déplacement linéaire du chariot et une précision de ±2° pour le déplacement angulaire du pont polaire;

Figure 1: Trajectoires imposées aux déplacements des GV


BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 16 / 25

DOSSIER TECHNIQUE DT8 : TABLEAU DES ENTREES-SORTIES UTILISEES

Repères sur	Mnémoniques utilisés en	Désignation des entrées - sorties
le pupitre	programmation	
105 LA	Voy_th	Voyant de défauts thermiques des moteurs du pont
109 LA	КІ	Alarme sonore : Klaxon surcharge du système de levage
601 LA	Voy_A301	Voyant pont en position atelier 301
110TO	Bp_AU	Bouton poussoir (NF) arrêt d'urgence
111TO	CM_auto	Interrupteur marche automatique du pont roulant
112TO	Bp_dcy	Bouton poussoir départ cycle du pont roulant
113TO	Bp_ar	Bouton poussoir (NF) arrêt du pont roulant
114TO	Bp_klaxon	Bouton poussoir commande manuelle du klaxon
115TO	Bp_mt45T	Bouton poussoir montée du treuil 45T
116TO	Bp_d45T	Bouton poussoir descente du treuil 45T
117TO	Voy_MT45T	Voyant montée du treuil de 45T
118TO	Voy_DT45T	Voyant descente du treuil de 45T
119TO	Voy_MPVGV	Voyant mouvements "PV et GV du pont roulant
120TO	Bp_AVCH	Bouton poussoir mouvement avance du chariot
121TO	Bp_ARCH	Bouton poussoir mouvement arrière du chariot
122TO	Bp_RDP	Bouton poussoir rotation gauche du pont roulant
123TO	Bp RGP	Bouton poussoir rotation droite du pont roulant
124TO	Bp_acq	Bouton poussoir acquittement de défaut
204TO	Bp_EZT	Bouton poussoir éclairage de la zone de travail
	FCH45T	Fin de course haut treuil 45T
	FCB45T	Fin de course BAS treuil 45T
	FCAC	Fin de course avant chariot
	FCARC	Fin de course arrière chariot
	Défaut_th	Contact de défaut thermique
	KMT45TM	Contacteur montée treuil 45T
	KMT45TD	Contacteur descente treuil 45T
0	KMCA	Contacteur avance chariot
16	KMCR	Contacteur arrière chariot
	KMPRG	Contacteur rotation gauche pont
::(O)	KMPRD	Contacteur rotation droite pont
Réserve bouton 1		Bouton mis en réserve
Réserve bouton 2		Bouton mis en réserve
	WT45T	Mémoire de travail numérique mesurant la masse soulevée par le treuil 45T32768<= WT45T<=+32767

BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 17 / 25

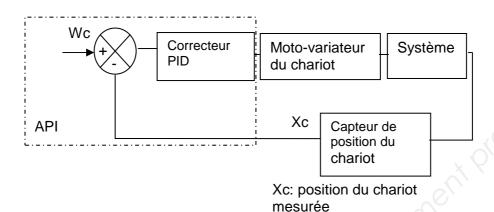
DOSSIER TECHNIQUE DT9: METHODE DE CALCUL DE LA CONSIGNE **DE POSITION Wc**

l'axe 🕏

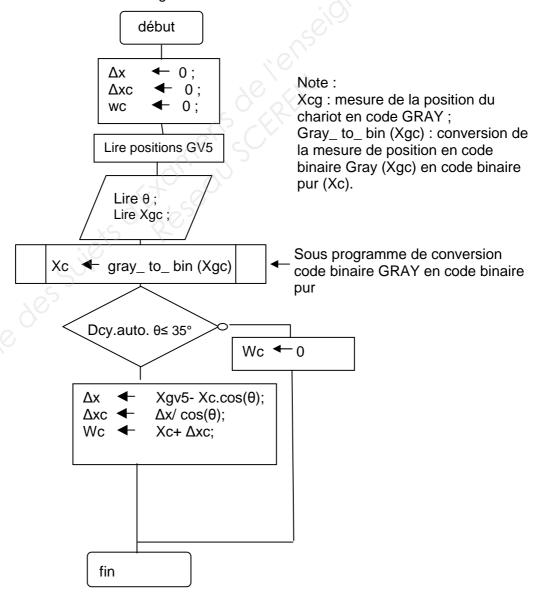
WC: consigne de position du chariot définie à partir des coordonnées polaires du pont

Méthode de calcul de la consigne du chariot Wc:

 $\Delta x = Xgv5 - Xc.cos(\theta)$ $\Delta xc = \Delta x/\cos(\theta)$ $Wc = Xc + \Delta xc$


suivant l'axe 1 : Xc gv5 = 15529.14 mm;

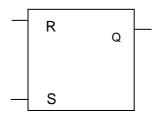
 $\theta = 15^{\circ}$.


BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 18 / 25

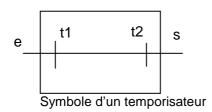
DOSSIER TECHNIQUE DT10 : METHODE UTILISEE POUR REALISER LA TRAJECTOIRE 1 DU GV5 A PARTIR DE LA COMMANDE DU CHARIOT

Schéma bloc permettant de réaliser la trajectoire 1 à partir de la consigne Wc

Organigramme d'élaboration de la consigne Wc du chariot



BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 19 / 25


DOSSIER TECHNIQUE DT11: FONCTIONS LOGIQUES

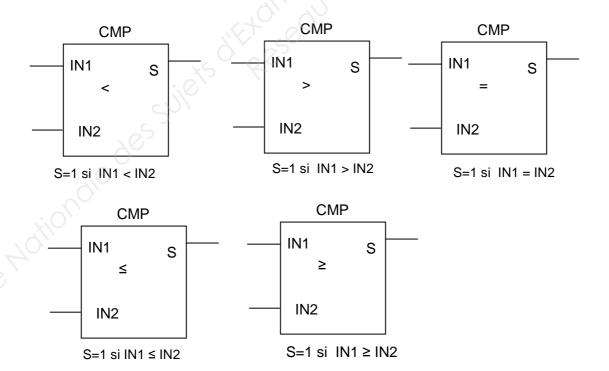
Mémoire bistable RS

R	S	Qt			
0	0	Q _{t-1}			
0	1	1			
1	0	0			
1	1	Indéterminé			

Temporisateur

E : Signal d'entrée logique ;

S: information de sortie logique;


t1 : temps de retard par rapport au passage à l'état logique 1 de l'entrée e ;

t2 : temps de retard par rapport au passage à l'état logique 0 de l'entrée e.

Comparateur numérique

Les entrées IN1 et IN2 sont du type numérique au format 16 bits et sont définies en valeurs décimales.

Les sorties S sont du type logique

BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 20 / 25

DOSSIER TECHNIQUE DT12: MODULE D'ENTREES- SORTIES M340

Automates programmables Industriels Automates Modicon M340

Plate-forme d'automatisme Modicon M340

Modules d'entrées/sorties

BMXDDI16 BMXDDI32

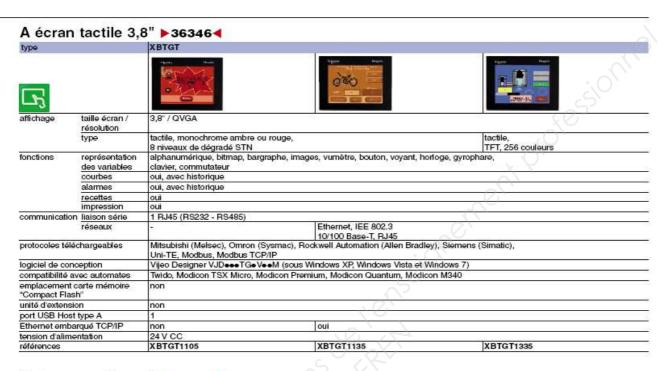
Modules d'entrées "Tout ou Rien" ▶43443◀

nature/tension	modularité (nombre de voies)	raccordement	référence
200 240 V	8 voies isolées	bornier débrochable 20 contacts	BMXDAI0805@
24 V	16 voies isolées	à vis à cage, à vis étriers ou	BMXDDI1602
48 V	11 1	à ressort	BMXDDI1603
ou ∼ 24 V		BMXFTB2000/2010/2020	BMXDAI1602
∼ 48 V			BMXDAI1603
∼ 100120 V			BMXDAI1604
24 V	32 voies isolées	1 connecteur 40 contacts	BMXDDI3202K
	64 voice jections	2 connectours 40 contacts	BMADDIE405K

Modules de sorties ▶43443◀

nature/tension	courant	modularité (nombre de voies)	raccordement	référence
statiques 24 V	0,5 A par vote	16 voies protégées	bornier débrochable	BMXDDO1602
			 20 contacts à vis à cage, 	BMXDD01612
\sim triacs 100 240 V	0,6 A par voie	16 voles non protégées	à vis étriers ou à ressort BMXFTB2000/2010/2020	BMXDAO1605
relais 24 V,	3 A(Ith) par voie	8 voies non protégées		BMXDRA0805
~ 24 240 V	2 A(Ith) par voie	16 voies non protégées		BMXDRA1605
statiques 24 V	0,1 A par voie	32 voies protégées	1 connecteur 40 contacts	BMXDD03202K
		64 voies protégées	2 connecteurs 40 contacts	BMXDDO6402K

nature/tension	modularité (nombre de voies)	raccordement	référence
entrées/sorties 24 V	8 entrées isolées et 8 sorties isolées	bornier débrochable 20 contacts à vis à cage,	BMXDDM16022
— et (S uniquement) entrées 24 V, sorties relais	8 entrées isolées et 8 sorties isolées	à vis étriers ou à ressort BMXFTB2000/2010/2020	BMXDDM16025
entrées/sorties 24 V	16 entrées isolées et 16 sorties isolées	1 connecteur 40 contacts	BMXDDM3202K


Entrées et sorties analogiques >43444

nature	gamme		modularité	raccordement	référence	
	tension	courant	(nbre de voies)	direct sur module		
entrées bas	niveau isolées tension	résistances, thermoco	uples et thermos	ondes		
nultigamme	± 40 mV, ± 80 mV, ± 160 mV, ± 320 mV,	24	4 voies	1 connecteur 40 contacts	BMXART0414	
	± 640 mV, ± 1,28 V		8 voies	2 connecteurs 40 contacts	BMXART0814	
entrées haut	niveau isolées					
,	± 10 V, 010 V, 05 V, 15 V, ±5 V	020 mA, 420 mA, ± 20 mA	4 voies	bornier débrochable 20 contacts (à vis ou à ressort)	BMXAMI0410	
			8 voies	bornier débrochable 28 contacts (à ressort)	BMXAMI0810	
sorties haut	niveau isolées			0		
	± 10 V	020 mA, 420 mA	2 voies	bornier débrochable 20 contacts	BMXAMO0210	
			(V)	(à vis ou à ressort)		
			4 voies	bornier débrochable 20 contacts (à vis ou à ressort)	BMXAMO0410	
entrées/sorti	ies haut niveau non isc	olées	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			
	± 10 V, 010 V, 05 V, 15 V, ± 5 V	020 mA, 420 mA, ± 20 mA	4 voles (E) 2 voles (S)	bornier débrochable 20 contacts (à vis ou à ressort)	BMXAMM0600	
entrées haut	niveau non isolées			10		
	± 10 V, 010 V, 05 V, 15 V, ± 5 V	020 mA, 420 mA, ± 20 mA	8 voies	bornier débrochable 20 contacts (à ressort)	BMXAMI0800	
sorties haut	niveau non isolées					
	± 10 V	020 mA, 420 mA	8 voies	bornier débrochable 20 contacts (à vis ou à ressort)	BMXAMO0802	

Raccordement possible avec l'offre de borniers déportés Telefast.

BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 21 / 25

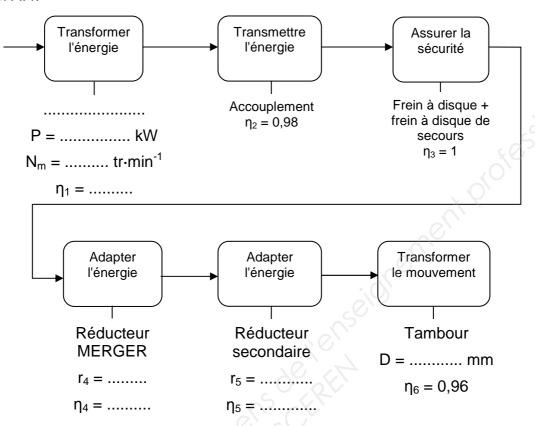
DOSSIER TECHNIQUE DT13: UNITE DE DIALOGUE XBTGT

A écran tactile 5,7" ▶36346◀

type		XBTGT							
		7700	Kto						
affichage	taille écran / résolution	5,7" / QVGA	20		50			5,7°/VGA	
	type	tactile, STN mo	nochrome		tactile STN could	eur tactile TFT coule	our	60	
	g.**t.**15	bleu (16 niveau rétro-éclairé	x) noir et blanc rétro-éclairé		4096 couleurs	65536 couleurs	65536 couleurs rétro-éclairage ultra puissant @	65536 couleurs @	
fonctions représentation des variables		alphanumériqu	e, bitmap, bargraph	e, images, vumètr	e, bouton, voyant,	horloge, gyrophare,	clavier, commutate	our,	
	courbes	oui, avec historique							
	alarmes	oul, avec historique							
	recettes	oui							
communication	liaison série	1 Sub-D9 (RS232/RS422 - RS485) + 1 RJ45 (RS485)							
	réseaux		-	Ethernet, IEEE 802.3 10/100 Base-1 RJ45	;	Ethernet, IEEE 802.3 10/100 Base-T, RJ45	Ethernet, 10/100 Base-T, RJ45	Ethernet, IEEE 802.3 10/100 Base-T, BJ45	
protocoles téléc	chargeables		sec), Omron (Sysm	ac), Rockwell Auto	omation (Allen Bra	dley), Siemens (Sim	natic),	1997,952	
logiciels de con	ception	Vijeo Designer	Vijeo Designer VJD•••TG•V••M (sous Windows XP, Windows Vista et Windows 7)						
compatibilité av	ec automates	Twido, Modicon TSX Micro, Modicon Premium, Modicon Quantum, Modicon M340, Modicon Momentum							
emplacement o		non	oul						
unité d'extension	n	oui							
port USB Host	type A	1							
entrée vidéo		non	64.	.00	8	573	.17)	w.	
entrée embarqu	iée TCP/IP	non	non	oui	non	oui	oui	oui	
tension d'alime	ntation	24 V CC	d:	-33	10	957	-202	- 200	
références		XBTGT2110	XBTGT2120	XBTGT2130	XBTGT2220	XBTGT2330	XBTGT2930@	XBTGT24300	

BTS ENVIRONNEMENT NUCLEAIRE	Session 2013	
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 22 / 25

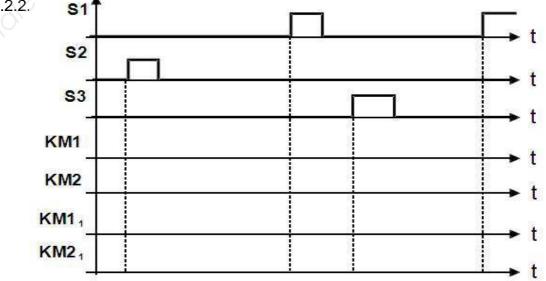
DOSSIER TECHNIQUE DT14: CODEURS


			Codeurs absolus monotour absolus multitour		nultitours	absolus multitours communicants		
			10		III.	Tie		
ø du boîtier (mm)			o 58	ø 90	ø 58	ø 90	ø 58 CANopen	ø 58 Profibus-DP
ø de l'axe (mm)			ø 6	ø 12	ø 10	ø 12	o 10	ø 10
type d'axe (2)		axe plein	axe plein	axe plein	axe plein	axe plein (4)	axe plein (4)	
vitesse de rotation maxi (tours/minute)		9000	6000	6000	6000	6000	6000	
fréquence ma	ximale (kHz)		100	100 (1000 SSI)	100 (500 SSI)	100 (500 SSI)	800	800
charge maxim	nale (daN)		10	20	10	20	11	11
couple (N.cm))		0,4	1	0,4	1	0,3	0,3
	mpérature (° C)		- 20+ 90	- 20+ 85	- 20+ 85	- 20+ 85	- 40+ 85	- 40+ 85
degré de prot	ection (selon IEC	60529)	IP 65	IP 66	IP 65/IP 67 (3)	IP 66	IP 64	IP 64
tension d'alimentation	ľ		1130 V				0001180-1	Y. 1.40
raccordement			connecteur radial M2	3 måle	2 x M12 + 1 x PG9	3 x PG9		
détecteurs				C		c S		
résolution	étage de sortie	code						
8192 points	push-pull	binaire	XCC2506PS81KB	XCC2912PS81KBN		4 0	8	E
68:	33	gray	XCC2506PS81KGN	XCC2912PS81KGN	- O	÷0	*	į.
	SSI, 13 bits	binaire	XCC2506PS81SBN	XCC2912PS81SBN	- / L V	¥. 3	-	e e
		gray	XCC2506PS81SGN	XCC2912PS81SGN				
4096 points/ 8192 tours	SSI, 25 bits (5)	gray	2		XCC3510PS48SGN	-	2:	
8192 points/	SSI, 25 bits (5)	binaire	*	- 1	XCC3510PS84SBN	XCC3912PS84SBN	×	-
4096 tours	18	gray		- 41		XCC3912PS84SGN	-	
8192 points/ 4096 tours	CANopen 25 bits	binaire		400			XCC3510PS84CBN	1-
	Profibus-DP 25 bits	binaire		125	-1		2	XCC3510PV84FBN
▶écran∢			▶31167◀			▶30520◀		

BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 23 / 25

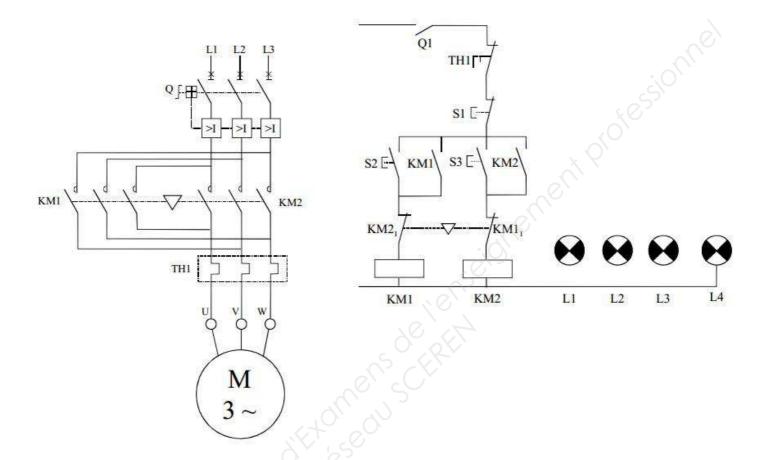
⁽²⁾ Toutes les versions existent également avec axe traversant et dispositif anti-rotation.
(3) IP 67 avec bride XCCRB3.
(4) Versions disponibles avec axes creux et dispositif anti-rotation.
(5) Il est possible d'obtenir des sorfies "parallèle" sur les codeurs absolus multitours avec les rallonges de désérialisation XCCRM23UB37.

DOCUMENT RÉPONSE DR1


Question A.4.

Question B.2.1.

NATURE DES PERTURBATIONS	CAUSES	EFFETS	MOYEN DE PROTECTION	REFERENCE SCHEMA
Surcharge	Surabondance momentanée d'appareils d'utilisation. Sur une période donnée, l'énergie dépasse les possibilités du circuit.			
Court-circuit	Liaison accidentelle entre deux points d'un circuit se trouvant normalement à des potentiels différents.			


Question B.2.2.

BTS ENVIRONNEMENT NUCLEAIRE		Session 2013
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 24 / 25

DOCUMENT RÉPONSE DR2

Question B.2.3.

Question C.7.1.

Position angulaire θ du pont polaire	ΔX (mm)	ΔXc (mm)	Wc (mm)	Wc.cosθ (mm)
15°	0	0	15529,14	15000
20°				
25°				
30°				
35°	2279,27	2782,47	18311,6	15000

BTS ENVIRONNEMENT NUCLEAIRE	Session 2013	
U42 MODELISATION ET CHOIX TECHNIQUES EN ENVIRONNEMENT NUCLEAIRE	ENE4JCT	Page 25 / 25