

Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

Formulaire

Physique nucléaire et radioprotection

(Certaines notions, considérées comme connues, sont volontairement omises)

■ Constantes

 $N_A = 6,022 \ 137 \times 10^{23} \ mol^{-1}$

 $c = 2,997 925 \times 10^8 \text{ m} \cdot \text{s}^{-1}$

 $e = 1,602 177 \times 10^{-19} C$

■ Masses et énergies

	Masse en kg	uma en MeV
u	1,660 540×10 ⁻²⁷	931,494
Electron	9,109 390×10 ⁻³¹	0,511
Proton	1,672 623×10 ⁻²⁷	938,272
Neutron	1,674 929×10 ⁻²⁷	939,566

 $M_{\frac{4}{2}He} = 4,002 603 \text{ g} \cdot \text{mol}^{-1}$

 $E = m \cdot c^2$

masse au repos

■ Section efficace

1 barn = 10^{-24} cm²

■ Activité

 $\lambda = \frac{\ln(2)}{T}$

constante radioactive en s⁻¹

 $A = N \cdot \lambda$

avec A en Bq

N = nombre d'atomes

 $A=A_0{\cdot}e^{{\cdot}\lambda{\cdot}t}$

 $n = A \cdot \frac{I}{100}$

taux d'émission

■ Pour les β

$$R = 0.412 \cdot \frac{E^n}{\rho}$$
 et $n = 1.265 - 0.0954 \cdot Ln(E)$

avec R = portée en cm

E = énergie maximale des β en MeV ρ = masse volumique en g·cm⁻³

$$\overset{\circ}{D} = 9 \times 10^{\text{-}7} \cdot \text{A} \cdot \frac{\text{I}}{100}$$
 avec $\overset{\circ}{D}$ en mGy·h⁻¹ à 10 cm A en Bq I en %

■ Pour les γ

$$\overset{\circ}{D}$$
 = 1,3×10⁻¹⁰·A·E· $\frac{I}{100}$ avec $\overset{\circ}{D}$ en mGy·h⁻¹ à 1 m
A en Bq
E en MeV
I en %

■ Transfert linéique d'énergie $TLE = \frac{E}{x}$

■ Ecrans

$$\overset{\circ}{D} = \overset{\circ}{D}_0 \cdot e^{-\mu \cdot x} \qquad \text{avec} \quad \mu = \text{coefficient d'atténuation linéique} \\ x = \text{épaisseur de l'écran}$$

$$\overset{\circ}{\mathsf{D}} = \overset{\circ}{\mathsf{D}}_0 \cdot \mathsf{B} \cdot \mathrm{e}^{-\mu \cdot \mathsf{x}}$$
 avec $\mathsf{B} = \mathsf{facteur} \; \mathsf{de} \; \mathsf{Build-Up}$

■ Dose efficace engagée

$$E = h(g) \cdot A_{inh} + e(g) \cdot A_{ing}$$
 avec $h(g)$ ou $h(g)_{inh} = DPUI$ inhalée en $Sv \cdot Bq^{-1}$

e(g) ou h(g)_{ing} = DPUI ingérée en Sv·Bq⁻¹ A_{inh} et A_{ing} en Bq = activité incorporée

E en Sv

$$A_{inh} = A_V \cdot Q \cdot t$$
 avec Q = quotient respiratoire = 1,2 m³·h⁻¹ (travail léger)

$$AI_{20inh} = \frac{0,02}{h(g)_{inh}}$$
 activité incorporée en Bq par inhalation conduisant

à une dose efficace engagée de 20 mSv

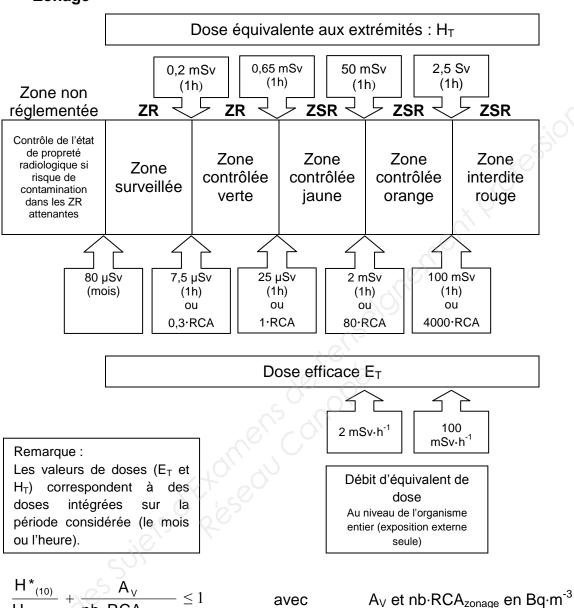
$$1 \cdot RCA = \frac{25 \times 10^{-6}}{Q \cdot h(g)_{inh}}$$
 avec RCA en Bq·m⁻³. Correspond à 25 µSv de dose

efficace engagée par inhalation en 1 h h(g) ou h(g)_{inh} = DPUI inhalée en Sv-Bq⁻¹ Q = quotient respiratoire = 1,2 m³·h⁻¹ (travail léger)

Brevet de technicien supérieur- Environnement nucléaire Formulaire indice 4 - Page 2 sur 6

$$\frac{1}{T_e} = \frac{1}{T} + \frac{1}{T_b}$$

■ Coefficients de pondérations radiologique et tissulaire


		W_{R}
	γ, Χ, β	1
	α , cluster	20
	< 10 keV	5
	10 keV à 100 keV	10
n	100 keV à 2 MeV	20
	2 MeV à 20 MeV	10
	> 20 MeV	5
	p > 2 MeV	5

	W_{T}
Gonades	0,20
Moelle osseuse	0,12
Colon	0,12
Poumon	0,12
Estomac	0,12
Vessie	0,05
Sein	0,05
Foie	0,05
Œsophage	0,05
Thyroïde	0,05
Peau	0,01
Os (surface)	0,01
Autres tissus ou organes	0,05
Total (corps entier)	1

■ Dosimétrie

20/6		Limites sur 12 mois glissants en mSv						
Catégo	orie	Public	В	А				
Corps entier	Corps entier $E = H_{(10)}$		6	20				
Peau (1cm ²)	Peau (1cm²) H _(0,07)		150	500				
Extrémités	$H_{(0,07)}$	-	150	500				
Cristallin	H ₍₃₎	15	45	150				

■ Zonage

Mathématiques

 H_{zonage}

$$\frac{1}{a} + \frac{1}{b} = \frac{a+b}{a \cdot b}$$

$$y = e^{x} \iff x = \ln(y)$$

$$e^{a} \cdot e^{b} = e^{a+b}$$

$$\ln(a \cdot b) = \ln(a) + \ln(b)$$

Contamination surfacique

A_s = activité surfacique en Bq·cm⁻²

A = activité en Bq

n = taux de comptage brut obtenu en impulsions/s ou c/s

n_{BDF} = nombre de chocs dus au bruit de fond.

 ε_i = rendement de l'appareil

 ε_s = rendement source

0,5 pour β si E_{βmax} ≥ 0,4 MeV

0,25 pour β si $E_{\beta max}$ < 0,4 MeV et pour α

 R_f = rendement frottis $\approx 10 \%$

S = surface frottée en cm²

$$A_{S} = \frac{n - n_{\text{BDF}}}{\epsilon_{i} \cdot S_{\text{contaminée}} \cdot \epsilon_{s}}$$

$$si$$
 $S_{contamin\'ee} < S_{d\'etecteur}$

$$A_{S} = \frac{n - n_{\text{BDF}}}{\epsilon_{\text{i}} \cdot S_{\text{détecteur}} \cdot \epsilon_{\text{s}}}$$

$$A_S = \frac{n - n_{\text{BDF}}}{R_{\text{f}} \cdot S \cdot \epsilon_{\text{i}} \cdot \epsilon_{\text{s}}}$$

$$A_S = \frac{n - n_{\text{BDF}}}{R_f \cdot S \cdot \epsilon_i \cdot \epsilon_s} \cdot \frac{S_{\text{frottis}}}{S_{\text{détecteur}}}$$

■ Contamination volumique

$$A_V = \frac{A}{V}$$

$$A_V = A_{V0} \cdot e^{-R \cdot t}$$

pour une émission A_{V0} de courte durée dans un local ventilé

avec A_V et A_{V0} = activité volumique en $Bq \cdot m^{-3}$

R = taux de renouvellement de l'air en h⁻¹

 $R = \frac{Q}{V}$ avec Q = débit de ventilation en m³·h⁻¹

V = volume du local en m³

t = durée en h

$$V = \text{volume du local e}$$

$$t = \text{dur\'ee en h}$$

$$A_V = \frac{A_h}{Q} \cdot (1 - e^{-R \cdot t}) \quad \text{pour une production continue } A_h \text{ en Bq} \cdot h^{-1}$$

$$A_V = \frac{A_s \cdot S \cdot \tau}{V} \quad \text{contamination volumique engendr\'ee par}$$

$$A_V = \frac{A_S \cdot S \cdot \tau}{V}$$

contamination volumique engendrée par une remise en suspension de la contamination surfacique de la surface S avec τ = taux de remise en suspension

Classification périodique des éléments

District Co.	Grou	ıpes											XX		Gro	upes		100
Période	1	- 11											Ш	IV	٧	VI	VII	VIII
1 couche K	1 H hydrogène 1,0		de l'	ombre de isotope le idant			∑≙ x	at	: masse i omique (molaire g.mol ⁻¹) o otopique	du							4 He
couche L	7 Li lithium 6,9	9 Be béryllium 9,0	Z:n	uméro at	omique-		М	na	turel				11 B bore 10,8	12 C carbone 12,0	14 N azote 14,0	16 O oxygéne 16,0	19 F fluor 19,0	20 Ne 10 Ne néon 20,2
couche M	23 Na sodium 23,0	24 Mg 12 Mg magnésium 24,3			Élér	nent	s d	e tr	ansi	t 1 o n			27 AI 13 AI aluminium 27,0	28 Si 14 Si silicium 28,1	31 P 15 P phosphore 31,0	32 S 16 S soufre 32,1	35 CI chlore 35,5	40 Ar 18 Ar argon 39,9
couche N	39 K 19 K potassium 39,1	40 Ca calcium 40,1	45 Sc scandium 45,0	48 Ti 22 Ti titane 47,9	51 V vanadium 50,9	52 Cr chrome 52,0	55 Mn manganèse 54,9		59 Co cobalt 58,9	58 Ni nickel 58,7	63 Cu cuivre 63,5	64 Zn zinc 65,4	69 Ga gallium 69,7	74 Ge 32 Ge germanium 72,6	75 As arsenic 74,9	80 Se sélénium 79,0	79 Br brome 79,9	84 Kr 36 Kr krypton 83,8
5 couche O	85 Rb 37 Rb rubidium 85,5	88 Sr strontium 87,6	89 Y 39 Y yttrium 88,9	90 Zr zirconium 91,2	93 Nb niobium 92,9	98 Mo 42 Mo molybděne 95,9	98 Tc technetium 99,0	102 Ru ruthénium 101,1	103 Rh rhodium 102.9	106 Pd 46 Pd palladium 106,4	107 Ag 47 Ag argent 107,9	114 Cd 48 Cd cadmium 112,4	115 In 49 In indium 114,8	120 Sn étain 118,7	121 Sb 51 Sb antimoine 121,8	128 Te tellure 127,6	127 53 iode 126,9	129 Xe xénon 131,3
couche P	133 Cs 55 Cs césium 132,9	138 Ba 56 Ba baryum 137,3	57 à 71 Ianthanides	180 Hf 72 H f hafnium 178,5	181 Ta 73 Ta tantale 180,9	184 W 74 W tungstène 183,9	185 Re 75 Re rhénium 186,2	192 Os osmium 190,2	193 Ir 77 Ir iridium 192,2	195 Pt 78 Pt platine 195,1	197 Au or 197,0	202 Hg 80 Hg mercure 200,6	205 TI 81 thallium 204,4	208 Pb 82 Pb plomb 207,2	209 Bi 83 Bi bismuth 209,0	210 Po 84 Po polonium 210	218 At 85 At astate 210	222 Rn 86 Rn radon 222
7 couche Q	223 Fr 87 Fr francium 223	226 Ra 88 Ra radium 226,1	89 à 103 actinides	104 Ku kurtchatovium 260	105 Ha hahnium 260	Ser												

Lanthanides

Actinides

139 La 137 lanthane 138,9	140 Ce cérium . 140,1					europium		terbium	162 Dy 66 Dy dysprosium 162,5			169 Tm 69 Tm thulium 168,9		175 Lu 71 Lu lutétium 175,0
227 Ac 89 Ac actinium 227	232 Th 90 Th thorium 232.0	231 Pa 91 Pa protactinium 231	238 U 92 U uranium 238.0	237 Np 93 Np neptunium 237	239 Pu 94 Pu plutonium 242	95 Am	96 Cm	97 Bk	98 Cf californium 249	99 Es einsteinium 254	100 Fm fermium 255	101 Md mendélévium 256	102 No nobélium 253	103 Lw